网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
SIRT1在糖尿病视网膜病变中的研究进展
作者:周海伦  杨曼  谭薇 
单位:遵义医科大学第三附属医院 眼科/遵义市眼科临床医学中心, 贵州 遵义 563000
关键词:沉默信息调节因子1 糖尿病性视网膜病变 炎症 氧化应激 凋亡 自噬 综述 
分类号:R774.1;R587.2
出版年·卷·期(页码):2021·49·第九期(1116-1121)
摘要:

糖尿病视网膜病变(DR)是糖尿病常见的微血管并发症。其发病机制复杂,主要与5个经典通路相关:多元醇通路激活、蛋白激酶C (PKC)激活、己糖胺通路的诱导、血管紧张素Ⅱ通路的激活及晚期糖基化终产物(AGE)水平增加。随着DR表观遗传学研究的日渐深入,组蛋白修饰成为其重点。组蛋白去乙酰化酶(HDAC)参与组蛋白修饰,其中一种名为沉默信息调节因子1(SIRTl)的HDAC,在DR的研究中占据重要地位。本文就SIRT1在改善DR中的炎症反应,减少异常血管和视网膜细胞凋亡等相关机制进行阐述。

参考文献:

[1] MIMURA T, KAJI Y, NOMA H, et al. The role of SIRT1 in ocular aging[J]. Exp Eye Res, 2013, 116:17-26.
[2] FAN C, MA Q, XU M, et al. Ginsenoside Rb1 attenuates high glucose-induced oxidative injury via the nad-parp-sirt axis in rat retinal capillary endothelial cells[J]. Int J Mol Sci, 2019, 20(19):4936
[3] CHEN B, WU L, CAO T, et al. MiR-221/SIRT1/Nrf2 signal axis regulates high glucose induced apoptosis in human retinal microvascular endothelial cells[J]. BMC Ophthalmol, 2020, 20(1):300.
[4] TANG B. SIRT1 and the Mitochondria[J]. Mol Cells, 2016, 39(2):87-95.
[5] HU X, LU Z, YU S, et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1[J]. Autophagy, 2019, 15(3):453-465.
[6] ZHOU Y, CAI L, XU L, et al. The role of SIRT1 in the retinal ganglion cells cultured by high glucose[J]. Int Ophthalmol, 2021, 41(3):845-852.
[7] KARBASFOROOSHAN H, KARIMI G. The role of SIRT1 in diabetic retinopathy[J]. Biomed Pharmacother, 2018, 97:190-194.
[8] ZHANG Y F, WEI W, LI L, et al. SIRT1 and HMGB1 regulate the AGE-induced pro-inflammatory cytokines in human retinal cells[J]. Clin Lab, 2015, 61(8):999-1008.
[9] MORTUZA R, FENG B, CHAKRABARTI S. SIRT1 reduction causes renal and retinal injury in diabetes through endothelin 1 and transforming growth factor β1[J]. J Cell Mol Med, 2015, 19(8):1857-1867.
[10] MISHRA M, FLAGA J, KOWLURU R. Molecular mechanism of transcriptional regulation of matrix metalloproteinase-9 in diabetic retinopathy[J]. J Cell Physiol, 2016, 231(8):1709-1718.
[11] MISHRA M, KOWLURU R. Role of PARP-1 as a novel transcriptional regulator of MMP-9 in diabetic retinopathy[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(7):1761-1769.
[12] ZHAO S, LI T, LI J, et al. miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway[J]. Diabetologia, 2016, 59(3):644-654.
[13] MISRA A, BLOOMGARDEN Z. Metabolic memory:evolving concepts[J]. J Diabetes, 2018, 10(3):186-187.
[14] MENG T, QIN W, LIU B. SIRT1 Antagonizes oxidative stress in diabetic vascular complication[J]. Front Endocrinol (Lausanne), 2020, 11:568861.
[15] ZHAO S, LI J, WANG N, et al. Fenofibrate suppresses cellular metabolic memory of high glucose in diabetic retinopathy via a sirtuin 1-dependent signalling pathway[J]. Mol Med Rep, 2015, 12(4):6112-6118.
[16] LIU S, LIN YU, LIU X. Protective effects of SIRT1 in patients with proliferative diabetic retinopathy via the inhibition of IL-17 expression[J]. Exp Ther Med, 2016, 11(1):257-262.
[17] MOHAMMAD G, ABDELAZIZ G M, Siddiquei M M, et al. Cross-Talk between Sirtuin 1 and the proinflammatory mediator high-mobility group box-1 in the regulation of blood-retinal barrier breakdown in diabetic retinopathy[J]. Curr Eye Res, 2019, 44(10):1133-1143.
[18] TONG P, PENG Q H, GU L, et al. LncRNA-MEG3 alleviates high glucose induced inflammation and apoptosis of retina epithelial cells via regulating miR-34a/SIRT1 axis[J]. Exp Mol Pathol, 2019, 107:102-109.
[19] TU Y, SONG E, WANG Z, et al. Melatonin attenuates oxidative stress and inflammation of Müller cells in diabetic retinopathy via activating the SIRT1 pathway[J]. Biomed Pharmacother, 2021, 137:111274.
[20] PARK S J, AHMAD F, UM J H, et al. Specific SIRT1 activator-mediated improvement in glucose homeostasis requires SIRT1-independent activation of AMPK[J]. EBioMedicine, 2017, 18:128-138.
[21] ZHENG Z, CHEN H, LI J, et al. Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin[J]. Diabetes, 2012, 61(1):217-228.
[22] LI J, YU S, YING J, et al. Resveratrol prevents ROS-induced apoptosis in high glucose-treated retinal capillary endothelial cells via the activation of AMPK/SIRT1/PGC-1 pathway[J]. Oxid Med Cell Longev, 2017, 2017:7584691.
[23] ABOUHISH H, THOUNAOJAM MC, JADEJA RN, et al. Inhibition of HDAC6 attenuates diabetes-induced retinal redox imbalance and microangiopathy[J]. Antioxidants (Basel), 2020, 9(7):599.
[24] HORI YS, KUNO A, HOSODA R, et al. Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress[J]. PLoS One, 2013, 8(9):e73875.
[25] CHEN Y, WANG Y, JIANG Y, et al. High-glucose treatment regulates biological functions of human umbilical vein endothelial cells via SIRT1/FOXO3 pathway[J]. Ann Transl Med, 2019, 7(9):199.
[26] SUN Y, HU X, HU G, et al. Curcumin attenuates hydrogen peroxide-Induced premature senescence via the activation of SIRT1 in human umbilical vein endothelial cells[J]. Biol Pharm Bull, 2015, 38(8):1134-1141.
[27] LI X, WU G, HAN F, et al. SIRT1 activation promotes angiogenesis in diabetic wounds by protecting endothelial cells against oxidative stress[J]. Arch Biochem Biophys, 2019, 661:117-124.
[28] KE N, PI L H, LIU Q, et al. Long noncoding RNA SNHG7 inhibits high glucose-induced human retinal endothelial cells angiogenesis by regulating miR-543/SIRT1 axis[J]. Biochem Biophys Res Commun, 2019, 514(2):503-509.
[29] LIN Y, LI L, LIU J, et al. SIRT1 deletion impairs retinal endothelial cell migration through downregulation of VEGF-A/VEGFR-2 and MMP14[J]. Invest Ophthalmol Vis Sci, 2018, 59(13):5431-5440.
[30] PAN Q, GAO Z, ZHU C, et al. Overexpression of histone deacetylase SIRT1 exerts an antiangiogenic role in diabetic retinopathy via miR-20a elevation and YAP/HIF1α/VEGFA depletion[J]. Am J Physiol Endocrinol Metab, 2020, 319(5):E932-E943.
[31] CHEN J, MICHAN S, JUAN A M, et al. Neuronal sirtuin1 mediates retinal vascular regeneration in oxygen-induced ischemic retinopathy[J]. Angiogenesis, 2013, 16(4):985-992.
[32] GUARANI V, DEFLORIAN G, FRANCO C A, et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase[J]. Nature, 2011, 473(7346):234-238.
[33] HE M, LONG P, YAN W, et al. ALDH2 attenuates early-stage STZ-induced aged diabetic rats retinas damage via SIRT1/Nrf2 pathway[J]. Life Sci, 2018, 215:227-235.
[34] ZENG Y, CUI Z, LIU J, et al. MicroRNA-29b-3p promotes human retinal microvascular endothelial cell apoptosis via blocking sirt1 in diabetic retinopathy[J]. Front Physiol, 2019, 10:1621.
[35] WU Y, PANG Y, WEI W, et al. Resveratrol protects retinal ganglion cell axons through regulation of the SIRT1-JNK pathway[J]. Exp Eye Res, 2020, 200:108249.
[36] LUO J, HE T, YANG J, et al. SIRT1 is required for the neuroprotection of resveratrol on retinal ganglion cells after retinal ischemia-reperfusion injury in mice[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(2):335-344.
[37] ZHOU Y, CAI L J, XU L H, et al. The role of SIRT1 in the retinal ganglion cells cultured by high glucose[J]. Int Ophthalmol, 2021, 41(3):845-852.
[38] XIAO H, LIU Z. Effects of microRNA-217 on high glucose-induced inflammation and apoptosis of human retinal pigment epithelial cells (ARPE-19) and its underlying mechanism[J]. Mol Med Rep, 2019, 20(6):5125-5133.
[39] KIM D I, PARK M J, CHOI J H, et al. PRMT1 and PRMT4 regulate oxidative stress-induced retinal pigment epithelial cell damage in SIRT1-dependent and SIRT1-independent manners[J]. Oxid Med Cell Longev, 2015, 2015:617919.
[40] DEHDASHTIAN E, MEHRZADI S, YOUSEFI B, et al. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress[J]. Life Sci, 2018, 193:20-33.
[41] ROSA MD, DISTEFANO G, GAGLIANO C, et al. Autophagy in diabetic retinopathy[J]. Curr Neuropharmacol, 2016, 14(8):810-825.
[42] LIM C J, LEE Y M, KANG S G, et al. Aquatide activation of SIRT1 reduces cellular senescence through a SIRT1-FOXO1-autophagy axis[J]. Biomol Ther (Seoul), 2017, 25(5):511-518.
[43] XU C, WANG L, FOZOUNI P, et al. SIRT1 is downregulated by autophagy in senescence and ageing[J]. Nat Cell Biol., 2020, 22(10):1170-1179.
[44] WANG L, XU C, JOHANSEN T, et al. SIRT1-a new mammalian substrate of nuclear autophagy[J]. Autophagy, 2021, 17(2):593-595.
[45] CHANDRASEKARAN K, ANJANEYULU M, CHOI J, et al. Role of mitochondria in diabetic peripheral neuropathy:influencing the NAD-dependent SIRT1-PGC-1α-TFAM pathway[J]. Int Rev Neurobiol, 2019, 145:177-209.
[46] BHEEREDDY P, YERRA V G, KALVALA A K, et al. SIRT1 activation by polydatin alleviates oxidative damage and elevates mitochondrial biogenesis in experimental diabetic neuropathy[J]. Cell Mol Neurobiol, 2021, 41(7):1563-1577.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 748080 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

苏ICP备09058541