网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
骨源性外泌体介导胞间成骨细胞和破骨细胞信号转导机制的研究进展
作者:崔浩  徐朱杰  王振廷  刘振伟  王鹏  刘仪 
单位:南京医科大学附属无锡人民医院 骨科, 江苏 无锡 214000
关键词:骨源性外泌体 成骨细胞 破骨细胞 骨稳态 综述 
分类号:R336
出版年·卷·期(页码):2023·51·第六期(873-878)
摘要:

骨微环境中细胞通过调节成骨细胞和破骨细胞分化来维持机体骨代谢平衡,其中,细胞间的信号传递发挥关键作用。外泌体作为信号转导的重要媒介已被广泛研究,目前关于骨源性外泌体的研究是现阶段骨质疏松及骨缺损修复方向的热点,不少学者针对骨源性外泌体在骨代谢活动中的胞间信号调节机制展开探讨。本文作者旨在综述骨微环境中骨细胞来源的外泌体的形成与分离获取和生物学作用,以及骨源性外泌体通过胞间信号转导途径调节成骨和破骨过程和骨基质的研究报道,以便于更好地了解骨源性外泌体在骨稳态调节中的作用。

参考文献:

[1] 陈逸青,章秋,代芳.外泌体在骨重建以及骨质疏松中的研究进展[J].中国骨质疏松杂志,2020,26(1):129-134.
[2] BOSKEY A L,POSNER A S.Bone structure,composition,and mineralization[J].Orthop Clin North Am,1984,15(4):597-612.
[3] KIM J M,LIN C,STAVRE Z,et al.Osteoblast-osteoclast communication and bone homeostasis[J].Cells,2020,9(9):2073.
[4] 翁震,何杨,周俊松.外泌体检测鉴定及其在凝血中作用的研究进展[J].现代医学,2019,47(5):614-618.
[5] ZABOROWSKI M P,BALAJ L,BREAKEFIELD X O,et al.Extracellular vesicles:composition,biological relevance,and methods of study[J].Bioscience,2015,65(8):783-797.
[6] YÁÑEZ-MÓ M,SILJANDER P R,ANDREU Z,et al.Biological properties of extracellular vesicles and their physiological functions[J].J Extracell Vesicles,2015,4:27066.
[7] HANSON P I,CASHIKAR A.Multivesicular body morphogenesis[J].Annu Rev Cell Dev Biol,2012,28:337-362.
[8] 曾凯,许利剑.外泌体源性miRNA在消化道肿瘤中的研究进展[J].医学研究生学报,2020,33(1):108-112.
[9] WILLMS E,CABAÑAS C,MÁGER I,et al.Extracellular vesicle heterogeneity:subpopulations,isolation techniques,and diverse functions in cancer progression[J].Front Immunol,2018,9:738.
[10] TAYLOR D D,SHAH S.Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes[J].Methods,2015,87:3-10.
[11] STRANSKA R,GYSBRECHTS L,WOUTERS J,et al.Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma[J].J Transl Med,2018,16(1):1.
[12] GÁMEZ-VALERO A,MONGUIÓ-TORTAJADA M,CARRERAS-PLANELLA L,et al.Size-exclusion chromatography-based isolation minimally alters Extracellular Vesicles' characteristics compared to precipitating agents[J].Sci Rep,2016,6:33641.
[13] LATHE G H,RUTHVEN C R.The separation of substances on the basis of their molecular weights,using columns of starch and water[J].Biochem J,1955,60(4):ⅩⅩⅩⅣ.
[14] YU L L,ZHU J,LIU J X,et al.A comparison of traditional and novel methods for the separation of exosomes from human samples[J].Biomed Res Int,2018,2018:3634563.
[15] YANG D,ZHANG W,ZHANG H,et al.Progress,opportunity,and perspective on exosome isolation-efforts for efficient exosome-based theranostics[J].Theranostics,2020,10(8):3684-3707.
[16] SOARES M T,CATITA J,MARTINS R I,et al.Exosome isolation from distinct biofluids using precipitation and column-based approaches[J].PLoS One,2018,13(6):e0198820.
[17] PATEL G K,KHAN M A,ZUBAIR H,et al.Comparative analysis of exosome isolation methods using culture supernatant for optimum yield,purity and downstream applications[J].Sci Rep,2019,9(1):5335.
[18] GYÖRGY B,MÓDOS K,PÁLLINGER E,et al.Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters[J].Blood,2011,117(4):e39-48.
[19] 章磊,流小舟,吴苏稼,等.外泌体在骨肉瘤发病机制中的研究进展[J].医学研究生学报,2016,29(2):196-200.
[20] 宋雨,刘建宇.外泌体在骨骼血管神经损伤修复中作用的研究进展[J].现代医学,2021,49(4):484-487.
[21] H RASHED M,BAYRAKTAR E,K HELA G,et al.Exosomes:from garbage bins to promising therapeutic targets[J].Int J Mol Sci,2017,18(3):538.
[22] XU J F,YANG G H,PAN X H,et al.Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells[J].PLoS One,2014,9(12):e114627.
[23] CHEN C,CHENG P,XIE H,et al.MiR-503 regulates osteoclastogenesis via targeting RANK[J].J Bone Miner Res,2014,29(2):338-347.
[24] DAI J J,DONG R,HAN X Y,et al.Osteoclast-derived exosomal let-7a-5p targets Smad2 to promote the hypertrophic differentiation of chondrocytes[J].Am J Physiol Cell Physiol,2020.Online ahead of print.
[25] DENG L,WANG Y,PENG Y,et al.Osteoblast-derived microvesicles:a novel mechanism for communication between osteoblasts and osteoclasts[J].Bone,2015,79:37-42.
[26] CUI Y,LUAN J,LI H,et al.Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression[J].FEBS Lett,2016,590(1):185-192.
[27] QIN Y,WANG L,GAO Z,et al.Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo[J].Sci Rep,2016,6:21961.
[28] ZHANG L,JIAO G,REN S,et al.Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion[J].Stem Cell Res Ther,2020,11(1):38.
[29] LIU W,LI L,RONG Y,et al.Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126[J].Acta Biomater,2020,103:196-212.
[30] LI Z,HASSAN M Q,JAFFERJI M,et al.Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation[J].J Biol Chem,2009,284(23):15676-15684.
[31] LI Z,HASSAN M Q,VOLINIA S,et al.A microRNA signature for a BMP2-induced osteoblast lineage commitment program[J].Proc Natl Acad Sci U S A,2008,105(37):13906-13911.
[32] YANG J X,XIE P,LI Y S,et al.Osteoclast-derived miR-23a-5p-containing exosomes inhibit osteogenic differentiation by regulating Runx2[J].Cell Signal,2020,70:109504.
[33] SUN W,ZHAO C,LI Y,et al.Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity[J].Cell Discov,2016,2:16015.
[34] XU J,LI D,CAI Z,et al.Exosomal lncRNAs NONMMUT000375.2 and NONMMUT071578.2 derived from titanium particle treated RAW264.7 cells regulate osteogenic differentiation of MC3T3-E1 cells[J].J Biomed Mater Res A,2020,108(11):2251-2262.
[35] XU T,LUO Y,WANG J,et al.Exosomal miRNA-128-3p from mesenchymal stem cells of aged rats regulates osteogenesis and bone fracture healing by targeting Smad5[J].J Nanobiotechnology,2020,18(1):47.
[36] WANG Q,SHEN X,CHEN Y,et al.Osteoblasts-derived exosomes regulate osteoclast differentiation through miR-503-3p/Hpse axis[J].Acta Histochem,2021,123(7):151790.
[37] YU L,SUI B,FAN W,et al.Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring COL1A1-targeting miRNA-92a-1-5p[J].J Extracell Vesicles,2021,10(3):e12056.
[38] CAPPARIELLO A,LOFTUS A,MURACA M,et al.Osteoblast-derived extracellular vesicles are biological tools for the delivery of active molecules to bone[J].J Bone Miner Res,2018,33(3):517-533.
[39] LAI G,ZHAO R,ZHUANG W,et al.BMSC-derived exosomal miR-27a-3p and miR-196b-5p regulate bone remodeling in ovariectomized rats[J].Peer J,2022,10:e13744.
[40] HUYNH N,VONMOSS L,SMITH D,et al.Characterization of regulatory extracellular vesicles from osteoclasts[J].J Dent Res,2016,95(6):673-679.
[41] YU W,LI S,GUAN X,et al.Higher yield and enhanced therapeutic effects of exosomes derived from MSCs in hydrogel-assisted 3D culture system for bone regeneration[J].Biomater Adv,2022,133:112646.
[42] HAN L,LIU H,FU H,et al.Exosome-delivered BMP-2 and polyaspartic acid promotes tendon bone healing in rotator cuff tear via Smad/RUNX2 signaling pathway[J].Bioengineered,2022,13(1):1459-1475.
[43] LI D,LIU J,GUO B,et al.Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation[J].Nat Commun,2016,7:10872.
[44] WEI Y,MA H,ZHOU H,et al.miR-424-5p shuttled by bone marrow stem cells-derived exosomes attenuates osteogenesis via regulating WIF1-mediated Wnt/β-catenin axis[J].Aging(Albany NY),2021,13(13):17190-17201.
[45] HASSAN M Q,MAEDA Y,TAIPALEENMAKI H,et al.miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells[J].J Biol Chem,2012,287(50):42084-42092.
[46] QIN Y,PENG Y,ZHAO W,et al.Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218:a novel mechanism in muscle-bone communication[J].J Biol Chem,2017,292(26):11021-11033.
[47] 刘胜男,张德纯.与钙化相关的骨基质蛋白研究的现状与展望[J].中国微生态学杂志,2012,24(1):94-96.
[48] LI R,CHEN C,ZHENG R Q,et al.Influences of hucMSC-exosomes on VEGF and BMP-2 expression in SNFH rats[J].Eur Rev Med Pharmacol Sci,2019,23(7):2935-2943.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 750738 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

苏ICP备09058541