网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
泛素化在脓毒症中免疫机制的研究进展
作者:张童童  葛许华 
单位:南京医科大学附属儿童医院 重症医学科, 江苏 南京 210008
关键词:脓毒症 泛素化 免疫调节 炎症反应 综述 
分类号:R459.7
出版年·卷·期(页码):2024·52·第三期(484-492)
摘要:

脓毒症被定义为宿主对感染的反应失调而危及生命的器官功能障碍,其发展过程涉及多种炎症反应和免疫调节,是重症监护病房中导致成人和儿童死亡率升高的重要原因。然而,脓毒症的发病机制十分复杂,导致机体免疫功能失调的具体机制尚未明确。泛素化作为一种重要的翻译后修饰,在参与调控多种与炎症反应和免疫调节相关的信号通路中发挥着重要作用,其在脓毒症免疫反应失调中的作用也逐渐被人们所发掘。因此,本文就泛素化在脓毒症免疫反应中的作用及机制进行系统综述,探究其作为潜在治疗靶点的广阔前景。

参考文献:

[1] RUDD K E,JOHNSON S C,AGESA K M,et al.Global,regional,and national sepsis incidence and mortality,1990-2017:analysis for the global burden of disease study[J].Lancet,2020,395(10219):200-211.
[2] LEMAY A C,ANZUETO A,RESTREPO M I,et al.Predictors of long-term mortality after severe sepsis in the elderly[J].Am J Med Sci,2014,347(4):282-288.
[3] BOONMEE P,RUANGSOMBOON O,LIMSUWAT C,et al.Predictors of mortality in elderly and very elderly emergency patients with sepsis:a retrospective study[J].West J Emerg Med,2020,21(6):210-218.
[4] ZHENG X,LEUNG K S,WONG M H,et al.Long non-coding RNA pairs to assist in diagnosing sepsis[J].BMC genomics,2021,22(1):275.
[5] XIE J,WANG H,KANG Y,et al.The epidemiology of sepsis in Chinese ICUs:a national cross-sectional survey[J].Crit Care Med,2020,48(3):e209-e218.
[6] CAO C,YU M,CHAI Y.Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis[J].Cell Death Dis,2019,10(10):782.
[7] SHAO S,ZHOU D,FENG J,et al.Regulation of inflammation and immunity in sepsis by e3 ligases[J].Front Endocrinol(Lausanne),2023,14:1124334.
[8] HERSHKO A,CIECHANOVER A.The ubiquitin system[J].Annu Rev Biochem,1998,67:425-479.
[9] SUMARA I,MAERKI S,PETER M.E3 ubiquitin ligases and mitosis:embracing the complexity[J].Trends Cell Biol,2008,18(2):84-94.
[10] CIECHANOVER A,ELIAS S,HELLER H,et al.“Covalent affinity” purification of ubiquitin-activating enzyme[J].J Biol Chem,1982,257(5):2537-2542.
[11] HERSHKO A,HELLER H,ELIAS S,et al.Components of ubiquitin-protein ligase system.Resolution,affinity purification,and role in protein breakdown[J].J Biol Chem,1983,258(13):8206-8214.
[12] LIAO Y,SUMARA I,PANGOU E.Non-proteolytic ubiquitylation in cellular signaling and human disease[J].Commun Biol,2022,5(1):114.
[13] BOZZA F A,SALLUH J I,JAPIASSU A M,et al.Cytokine profiles as markers of disease severity in sepsis:a multiplex analysis[J].Crit Care,2007,11(2):R49.
[14] HOTCHKISS R S,MONNERET G,PAYEN D.Sepsis-induced immunosuppression:from cellular dysfunctions to immunotherapy[J].Nat Rev Immunol,2013,13(12):862-874.
[15] HUANG M,CAI S,SU J.The pathogenesis of sepsis and potential therapeutic targets[J].Int J Mol Sci,2019,20(21):5376.
[16] EBNER P,VERSTEEG G A,IKEDA F.Ubiquitin enzymes in the regulation of immune responses[J].Crit Rev Biochem Mol Biol,2017,52(4):425-460.
[17] JANEWAY C A.Approaching the asymptote? Evolution and revolution in immunology[J].Cold Spring Harb Symp Quant Biol,1989,54(Pt 1):1-13.
[18] RAYMOND S L,HOLDEN D C,MIRA J C,et al.Microbial recognition and danger signals in sepsis and trauma[J].Biochim Biophys Acta Mol Basis Dis,2017,1863(10 Pt B):2564-2573.
[19] WU J,CHEN Z J.Innate immune sensing and signaling of cytosolic nucleic acids[J].Annu Rev Immunol,2014,32:461-488.
[20] KAWAI T,AKIRA S.The role of pattern-recognition receptors in innate immunity:update on toll-like receptors[J].Nat Immunol,2010,11(5):373-384.
[21] TEMPERLEY N D,BERLIN S,PATON I R,et al.Evolution of the chicken toll-like receptor gene family:a story of gene gain and gene loss[J].BMC Genomics,2008,9:62.
[22] METZGER M B,PRUNEDA J N,KLEVIT R E,et al.Ring-type e3 ligases:master manipulators of e2 ubiquitin-conjugating enzymes and ubiquitination[J].Biochim Biophys Acta,2014,1843(1):47-60.
[23] WALSH M C,LEE J,CHOI Y.Tumor necrosis factor receptor-associated factor 6(traf6) regulation of development,function,and homeostasis of the immune system[J].Immunol Rev,2015,266(1):72-92.
[24] JIANG X,CHEN Z J.The role of ubiquitylation in immune defence and pathogen evasion[J].Nat Rev Immunol,2011,12(1):35-48.
[25] WANG C,DENG L,HONG M,et al.Tak1 is a ubiquitin-dependent kinase of MKK and IKK[J].Nature,2001,412(6844):346-351.
[26] PETERSEN S L,WANG L,YALCIN-CHIN A,et al.Autocrine TNFalpha signaling renders human cancer cells susceptible to SMAC-mimetic-induced apoptosis[J].Cancer Cell,2007,12(5):445-456.
[27] HUANG S,CHENG A,WANG M,et al.Viruses utilize ubiquitination systems to escape TLR/RLR-mediated innate immunity[J].Front Immunol,2022,13:1065211.
[28] ZHANG J,CAO L,GAO A,et al.E3 ligase RNF99 negatively regulates TLR-mediated inflammatory immune response via K48-linked ubiquitination of TAB2[J].Cell Death Differ,2023,30(4):966-978.
[29] BOONE D L,TURER E E,LEE E G,et al.The ubiquitin-modifying enzyme A20 is required for termination of toll-like receptor responses[J].Nat Immunol,2004,5(10):1052-1060.
[30] LIU J,HAN C,XIE B,et al.Rhbdd3 controls autoimmunity by suppressing the production of IL-6 by dendritic cells via K27-linked ubiquitination of the regulator nemo[J].Nat Immunol,2014,15(7):612-622.
[31] ARIMOTO K,FUNAMI K,SAEKI Y,et al.Polyubiquitin conjugation to NEMO by triparite motif protein 23(TRIM23) is critical in antiviral defense[J].Proc Natl Acad Sci U S A,2010,107(36):15856-15861.
[32] KAWAI T,TAKAHASHI K,SATO S,et al.Ips-1,an adaptor triggering RIG-I-and MDA5-mediated type I interferon induction[J].Nat Immunol,2005,6(10):981-988.
[33] SAITO T,HIRAI R,LOO Y M,et al.Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2[J].Proc Natl Acad Sci U S A,2007,104(2):582-587.
[34] SHARMA S,TENOEVER B R,GRANDVAUX N,et al.Triggering the interferon antiviral response through an IKK-related pathway[J].Science,2003,300(5622):1148-1151.
[35] INN K S,GACK M U,TOKUNAGA F,et al.Linear ubiquitin assembly complex negatively regulates RIG-I-and trim25-mediated type I interferon induction[J].Mol Cell,2011,41(3):354-365.
[36] OSHIUMI H,MATSUMOTO M,HATAKEYAMA S,et al.Riplet/RNF135,a ring finger protein,ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection[J].J Biol Chem,2009,284(2):807-817.
[37] ZHU Q,YU T,GAN S,et al.TRIM24 facilitates antiviral immunity through mediating K63-linked TRAF3 ubiquitination[J].J Exp Med,2020,217(7):e20192083.
[38] CHEN Y Y,RAN X H,NI R Z,et al.TRIM28 negatively regulates the RLR signaling pathway by targeting MAVS for degradation via K48-linked polyubiquitination[J].J Biol Chem,2023,299(5):104660.
[39] AKTHER M,HAQUE M E,PARK J,et al.NLRP3 ubiquitination-a new approach to target NLRP3 inflammasome activation[J].Int J Mol Sci,2021,22(16):8780.
[40] QIN Y,LI Q,LIANG W,et al.TRIM28 sumoylates and stabilizes NLRP3 to facilitate inflammasome activation[J].Nat Commun,2021,12(1):4794.
[41] XU T,YU W,FANG H,et al.Ubiquitination of NLRP3 by gp78/Insig-1 restrains NLRP3 inflammasome activation[J].Cell Death Differ,2022,29(8):1582-1595.
[42] HUMPHRIES F,BERGIN R,JACKSON R,et al.The E3 ubiquitin ligase Pellino2 mediates priming of the NLRP3 inflammasome[J].Nat Commun,2018,9(1):1560.
[43] SONG H,LIU B,HUAI W,et al.The E3 ubiquitin ligase TRIM31 attenuates nlrp3 inflammasome activation by promoting proteasomal degradation of NLRP3[J].Nat Commun,2016,7:13727.
[44] HAN S,LEAR T B,JEROME J A,et al.Lipopolysaccharide primes the NALP3 inflammasome by inhibiting its ubiquitination and degradation mediated by the SCFFBXL2 E3 ligase[J].J Biol Chem,2015,290(29):18124-18133.
[45] MUÑOZ-PLANILLO R,KUFFA P,MARTÍNEZ-COLÓN G,et al.K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter[J].Immunity,2013,38(6):1142-1153.
[46] TANG J,TU S,LIN G,et al.Sequential ubiquitination of NLRP3 by RNF125 and Cbl-b limits inflammasome activation and endotoxemia[J].J Exp Med,2020,217(4):e20182091.
[47] DEMPSEY A,BOWIE A G.Innate immune recognition of DNA:a recent history[J].Virology,2015,479-480:146-152.
[48] TSUCHIDA T,ZOU J,SAITOH T,et al.The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA[J].Immunity,2010,33(5):765-776.
[49] LIU H,MOURA-ALVES P,PEI G,et al.CGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity[J].EMBO Rep,2019,20(4):e46293.
[50] DOBBS N,BURNAEVSKIY N,CHEN D,et al.STING activation by translocation from the ER is associated with infection and autoinflammatory disease[J].Cell Host Microbe,2015,18(2):157-168.
[51] LIU S,CAI X,WU J,et al.Phosphorylation of innate immune adaptor proteins MAVS,STING,and TRIF induces IRF3 activation[J].Science,2015,347(6227):aaa2630.
[52] NI G,KONNO H,BARBER G N.Ubiquitination of STING at lysine 224 controls IRF3 activation[J].Sci Immunol,2017,2(11):eaah7119.
[53] ZHANG J,HU M M,WANG Y Y,et al.TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination[J].J Biol Chem,2012,287(34):28646-28655.
[54] GUO Y,JIANG F,KONG L,et al.OTUD5 promotes innate antiviral and antitumor immunity through deubiquitinating and stabilizing STING[J].Cell Mol Immunol,2021,18(8):1945-1955.
[55] RIMMELÉ T,PAYEN D,CANTALUPPI V,et al.Immune cell phenotype and function in sepsis[J].Shock,2016,45(3):282-291.
[56] GERMAIN R N.T-cell development and the CD4-CD8 lineage decision[J].Nat Rev Immunol,2002,2(5):309-322.
[57] SMITH-GARVIN J E,KORETZKY G A,JORDAN M S.T cell activation[J].Annu Rev Immunol,2009,27:591-619.
[58] ZINNGREBE J,MONTINARO A,PELTZER N,et al.Ubiquitin in the immune system[J].EMBO Rep,2014,15(1):28-45.
[59] NEDEVA C.Inflammation and cell death of the innate and adaptive immune system during sepsis[J].Biomolecules,2021,11(7):1011.
[60] THAM E L,SHRIKANT P,MESCHER M F.Activation-induced nonresponsiveness:a Th-dependent regulatory checkpoint in the CTL response[J].J Immunol,2002,168(3):1190-1197.
[61] MOSMANN T R,CHERWINSKI H,BOND M W,et al.Two types of murine helper T cell clone.I.Definition according to profiles of lymphokine activities and secreted proteins[J].J Immunol,1986,136(7):2348-2357.
[62] ZHANG X,GAO L,LEI L,et al.A myd88-dependent early IL-17 production protects mice against airway infection with the obligate intracellular pathogen chlamydia muridarum[J].J Immunol,2009,183(2):1291-1300.
[63] HUANG H,JEON M S,LIAO L,et al.K33-linked polyubiquitination of T cell receptor-zeta regulates proteolysis-independent T cell signaling[J].Immunity,2010,33(1):60-70.
[64] BALAGOPALAN L,ASHWELL B A,BERNOT K M,et al.Enhanced T-cell signaling in cells bearing linker for activation of T-cell(LAT) molecules resistant to ubiquitylation[J].Proc Natl Acad Sci U S A,2011,108(7):2885-2890.
[65] ARNON T I,HORTON R M,GRIGOROVA I L,et al.Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress[J].Nature,2013,493(7434):684-688.
[66] DONG X,TU H,QIN S,et al.Insights into the roles of B cells in patients with sepsis[J].J Immunol Res,2023,2023:7408967.
[67] SEN R.Control of B lymphocyte apoptosis by the transcription factor NF-kappaB[J].Immunity,2006,25(6):871-883.
[68] KUROSAKI T,HIKIDA M.Tyrosine kinases and their substrates in B lymphocytes[J].Immunol Rev,2009,228(1):132-148.
[69] SCHUMAN J,CHEN Y,PODD A,et al.A critical role of TAK1 in B-cell receptor-mediated nuclear factor kappaB activation[J].Blood,2009,113(19):4566-4574.
[70] PIAO W,XIONG Y,FAMULSKI K,et al.Regulation of T cell afferent lymphatic migration by targeting LTβR-mediated non-classical NFκB signaling[J].Nat Commun,2018,9(1):3020.
[71] FELTHAM R,MOULIN M,VINCE J E,et al.Tumor necrosis factor(TNF) signaling,but not tweak(TNF-like weak inducer of apoptosis)-triggered cIAP1(cellular inhibitor of apoptosis protein 1) degradation,requires cIAP1 RING dimerization and E2 binding[J].J Biol Chem,2010,285(23):17525-17536.
[72] VARFOLOMEEV E,WAYSON S M,DIXIT V M,et al.The inhibitor of apoptosis protein fusion c-IAP2.Malt1 stimulates NF-κB activation independently of TRAF1 and TRAF2[J].J Biol Chem,2006,281(39):29022-29029.
[73] XIAO N,ETO D,ELLY C,et al.The E3 ubiquitin ligase itch is required for the differentiation of follicular helper T cells[J].Nat Immunol,2014,15(7):657-666.
[74] LIU X,ZHANG Y,WEI Y,et al.The E3 ubiquitin ligase itch is required for B-cell development[J].Sci Rep,2019,9(1):421.
[75] SATPATHY S,WAGNER S A,BELI P,et al.Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation[J].Mol Syst Biol,2015,11(6):810.
[76] HANPUDE P,BHATTACHARYA S,DEY A K,et al.Deubiquitinating enzymes in cellular signaling and disease regulation[J].IUBMB Life,2015,67(7):544-555.
[77] GENG J,HUANG X,LI Y,et al.Down-regulation of USP13 mediates phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis[J].Respir Res,2015,16:1024.
[78] WU B,MIAO X,YE J,et al.The protective effects of protease inhibitor MG-132 on sepsis-induced acute lung rats and its possible mechanisms[J].Med Sci Monit,2019,25:5690-5699.
[79] MATSUO S,SHARMA A,WANG P,et al.PYR-41,a ubiquitin-activating enzyme E1 inhibitor,attenuates lung injury in sepsis[J].Shock,2018,49(4):442-450.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 759462 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

苏ICP备09058541