网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
加权基因共表达网络分析结合机器学习筛选糖尿病心肌病中与Th17细胞相关的核心基因
作者:秦冲1  王振辉1  王越2  董健2  赵娜2  刘擎2  张洪亮2 
单位:1. 佳木斯大学 临床医学院, 黑龙江 佳木斯 154000;
2. 佳木斯大学附属第一医院 心内科, 黑龙江 佳木斯 154000
关键词:糖尿病心肌病|辅助性T细胞17|加权基因共表达网络分析|机器学习|核心基因 
分类号:R542.2;R587.2
出版年·卷·期(页码):2025·53·第四期(546-558)
摘要:

目的: 探讨免疫细胞相关基因在糖尿病心肌病(DCM)中的作用,并探讨其潜在机制。方法: 采用单样本基因集富集分析探讨样本的免疫浸润情况。通过加权基因共表达网络分析(WGCNA)挖掘与免疫浸润相关的基因。通过富集分析,分析这些基因的功能。基因间的相互作用在蛋白-蛋白相互作用网络中可视化,通过Cytoscape软件鉴定核心基因。通过机器学习筛选核心基因,生成受试者工作特征(ROC)曲线来评估核心基因在DCM诊断中的表现。采用实时荧光定量逆转录聚合酶链反应(qRT-PCR)和Western blot检测核心基因在大鼠心肌组织中的表达。结果: DCM组样本中辅助性T细胞17(Th17)细胞浸润分数显著增加。差异表达分析和WGCNA鉴定出28个与Th17细胞浸润相关的差异基因,这些基因与代谢相关。使用LASSO回归、随机森林模型等算法从28个差异基因中鉴定出核心基因。此外,ROC曲线分析显示,核心基因具有极佳的区分DCM的能力。最后,体内实验表明,qRT-PCR和Western blot的结果与测序结果一致。结论: WGCNA联合机器学习筛选出DCM中与Th17细胞相关的核心基因为2,4-二烯酰辅酶a还原酶1(Decr1)和线粒体3-羟基-3-甲基戊二酰辅酶A合成酶2(Hmgcs2),在DCM中表达量均显著高于正常。

Objective: To investigate the role of immune cell-related genes in diabetic cardiomyopathy(DCM) and their mechanistic underpinnings. Methods: Immune infiltration profiles were analyzed via single-sample gene set enrichment analysis(ssGSEA). Weighted gene co-expression network analysis(WGCNA) identified immune-associated gene modules. Functional enrichment analyses(GO/KEGG) elucidated biological pathways, while protein-protein interaction(PPI) networks(STRING/Cytoscape) revealed core genes. Machine learning(LASSO/random forest) screened core diagnostic biomarkers, validated by receiver operating characteristic(ROC) curves. Expression levels of core genes were experimentally confirmed in rat DCM myocardial tissues using qRT-PCR and Western blot. Results: The DCM group exhibited significantly elevated T helper cell 17(Th17)cell infiltration scores. Differential expression analysis combined with WGCNA identified 28 Th17-associated genes enriched in metabolic pathways. Machine learning algorithms(LASSO/random forest) screened core genes from this cohort, validated by ROC curves demonstrating robust DCM diagnostic capacity. Experimental validation via qRT-PCR and Western blot confirmed consistent expression patterns between sequencing data and myocardial tissues in vivo. Conclusion: Integrated WGCNA and machine learning revealed two Th17-associated core genes in DCM: Decr1(2,4-dienoyl-CoA reductase 1) and Hmgcs2(mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2), both showing significantly upregulated expression compared to controls.

参考文献:

[1] GUANGHONG J,ADAM W C,JAMES R S.Diabetic cardiomyopathy:a hyperglycaemia- and insulin-resistance-induced heart disease[J].Diabetologia,2017,61(61):21-28.
[2] SIHEM B,ABEL E D.Diabetic cardiomyopathy revisited[J].Circulation,2007,115(125):3213-3223.
[3] CHRISTIAN R,JOHANN B.Of mice and men:models and mechanisms of diabetic cardiomyopathy[J].Basic Res Cardiol,2018,114(111):112.
[4] MURTAZA G,VIRK H U H,KHALID M,et al.Diabetic cardiomyopathy - a comprehensive updated review[J].Prog Cardiovasc Dis,2019,62(64):315-326.
[5] DIETER A K,ÅSA B G.Unbreak my heart:targeting mitochondrial autophagy in diabetic cardiomyopathy[J].Antioxid Redox Signal,2015,22(17):1527-1544.
[6] CECILIA G,RYAN H,GABRIELLA B,et al.Diabetic cardiomyopathy modelling using induced pluripotent stem cell derived cardiomyocytes:recent advances and emerging models[J].Stem Cell Rev Rep,2018,15(11):13-22.
[7] CHENGJU T,JINGHUA Z,JINFENG L,et al.Ryanodine receptor and immune-related molecules in diabetic cardiomyopathy[J].Esc Heart Failure,2021,8(4):2637-2646.
[8] TRACEY M,LIFEN L,CINDY L,et al.T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans[J].Arterioscler Thromb Vasc Biol,2014,34(12):2637-2643.
[9] CHANGYAN Z,LIYUN H,HUAN Y,et al.Changes of Th17 cells,regulatory T cells,Treg/Th17,IL-17 and IL-10 in patients with type 2 diabetes mellitus:a systematic review and Meta-analysis[J].Endocrine,2022,76(72):263-272.
[10] SANDQUIST I,KOLLS J.Update on regulation and effector functions of Th17 cells[J].F1000Res,2018,7:205. A.Decr1和Hmgcs2基因的mRNA水平;B.Decr1和Hmgcs2基因的蛋白质水平 图11 DCM大鼠中Decr1和Hmgcs2的表达水平变化
[11] NALBANT A.IL-17,IL-21,and IL-22 cytokines of T helper 17 cells in cancer[J].J Interferon Cytokine Res,2019,39(1):56-60.
[12] 王艳.T细胞在糖尿病肾病发展中作用的研究进展[J].现代医学,2022,50(11):1481-1485.
[13] RAMON I K G,RYAN K,ERIKA L P.Unraveling the complex interplay between T cell metabolism and function[J].Annu Rev Immunol,2018,36:461-488.
[14] NICOLE M C,MARK B,HONGBO C.Metabolic coordination of T cell quiescence and activation[J].Nat Rev Immunol,2019,20(21):55-70.
[15] HONGXING S,LEWIS ZHICHANG S.Metabolic regulation of TH17 cells[J].Mol Immunol,2019,109:181-187.
[16] YINLIANG C,JINBAO Y,YING W,et al.Identification and analysis of hub genes in diabetic cardiomyopathy:potential role of cytochrome P450 1A1 in mitochondrial metabolism and STZ-induced myocardial dysfunction[J].Front Cardiovasc Med,2022,9:835244.
[17] PETER L,STEVE H.WGCNA:an R package for weighted correlation network analysis[J].BMC Bioinformatics,2008,9:559.
[18] KIN-YING T.Identification of differential gene expression by high throughput analysis[J].Comb Chem High Throughput Screen,2000,3(3):235-241.
[19] SIWEN Z,XIAOKUN G,SHUO Y,et al.The alterations in and the role of the Th17/Treg balance in metabolic diseases[J].Front Immunol,2021,12:678355.
[20] NÚRIA M,THERESE V,KIM W,et al.Chromatin decondensation and T cell hyperresponsiveness in diabetes-associated hyperglycemia[J].J Immunol,2014,193(199):4457-4468.
[21] XIAOYU P,XUEQING Z,JIANGLI B,et al.Effects of high-fat diet on cardiovascular protein expression in mice based on proteomics[J].Diabetes Metab Syndr Obes,2023,16:873-882.
[22] LEI D,YANG X,WENJUN Z,et al.Weighted gene co-expression network analysis identifies ANGPTL4 as a key regulator in diabetic cardiomyopathy via FAK/SIRT3/ROS pathway in cardiomyocyte[J].Front Endocrinol(Lausanne),2021,12:705154.
[23] GARY D L,QUTUBA G K,KIM L H,et al.Ketone metabolism in the failing heart[J].Biochim Biophys Acta Mol Cell Biol Lipids,2020,1865(1812):158813.
[24] PATRYCJA P,PETER A C.Multi-dimensional roles of ketone bodies in fuel metabolism,signaling,and therapeutics[J].Cell Metab,2017,25(22):262-284.
[25] KUNAL S,SANKET K S,NIRAL P,et al.High fat diet upregulates fatty acid oxidation and ketogenesis via intervention of PPAR-γ[J].Cell Physiol Biochem,2018,54(56):1255.
[26] OLIVER J R,ANDREW A,JACK J M,et al.Noninvasive in vivo assessment of cardiac metabolism in the healthy and diabetic human heart using hyperpolarized 13C MRI[J].Circ Res,2020,126(126):725-736.
[27] MIN C,HAO W,YAJUAN A,et al.Identification of important modules and biomarkers in diabetic cardiomyopathy based on WGCNA and LASSO analysis[J].Front Endocrinol(Lausanne),2024,15:1185062.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 894424 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626

苏ICP备09058541