网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
免疫介导肠道微生物群和多发性骨髓瘤之间的因果关系:孟德尔随机化研究
作者:邵文1  段丽祥1  李乐1  郭鹏2  霍静3 
单位:1. 山西医科大学附属运城市中心医院 血液内科, 山西 运城 044000;
2. 山西医科大学附属运城市中心医院 肾脏内科, 山西 运城 044000;
3. 山西医科大学附属运城市中心医院 健康促进办公室, 山西 运城 044000
关键词:肠道微生物群 免疫细胞 多发性骨髓瘤 孟德尔随机化 中介效应 
分类号:R733.3
出版年·卷·期(页码):2025·53·第七期(1038-1049)
摘要:

目的:多发性骨髓瘤(multiple myeloma,MM)是较常见的恶性血液系统疾病,肠道微生物和免疫可能影响了MM的发病与进展,但是它们之间的因果关系尚不清楚。本研究拟利用孟德尔随机化(Mendelian randomization,MR)探索肠道微生物群(gut microbiota,GM)、免疫细胞表型与MM之间的因果关系,并确立免疫细胞的中介作用。方法:通过全基因组关联研究数据,以GM作为暴露,免疫细胞表型作为中介,MM作为结局,基于两步MR方法探索731种免疫细胞表型在其中的中介作用。首先利用逆方差加权法及多种方法评估GM与MM、免疫细胞表型和MM的因果关系,在确定与MM具有显著因果关系的GM和免疫细胞后,进一步探索当前 GM和免疫细胞表型的因果关系。结果:有9种肠道微生物(1纲、1目、2科、2属和3种)和MM存在因果关系,同时有42种免疫细胞表型和MM存在因果关联。在这些具有因果关系的GM和免疫细胞中,一共存在7对因果关系。经过中介分析后,IgD+ CD24+ 细胞表面表达IgD计数介导了Veillonellaceae和MM的风险(中介效应=5.91%),中央记忆性CD4+ T细胞表面表达CD3计数(中介效应=7.28%)和分泌型调节性T细胞表面表达CD3计数(中介效应=6.70%)均介导了Ruminococcus1对MM的风险。 所有的敏感性分析结果都进一步增强了结果的稳健性。结论:GM、免疫细胞表型与MM之间均存在显著的因果关系。通过GM来进行免疫调节从而对MM进行预防、监测和治疗是一种前景广阔的方法。

Objective:To explore the causal relationship between gut microbiota(GM), immune cell phenotypes, and multiple myeloma(MM) using Mendelian randomization(MR), and to establish the mediating role of immune cells. Method: Using data from genome-wide association studies, the mediating role of 731 immune cell phenotypes were explored based on two-step MR methods, with GM as exposure, immune cell phenotype as the mediator, and MM as the outcome. The causal associations of GM with MM, immune cell phenotype and MM were first assessed using inverse variance weighted method and multiple methods. After identifying GM and immune cells with significant causal relationships with MM, the causal relationships between current GM and immune cell phenotypes were further explored. Results:The results suggested a causal relationship between 9 types of gut microbiota(1 class, 1 order, 2 families, 2 genera, and 3 species) and MM. Additionally, 42 immune cell phenotypes were causally associated with MM. Among these, there were 7 pairs with causal relationships between GM and immune cells. Mediator analysis indicated that IgD on IgD+ CD24+ mediated the risk of Veillonellaceae for MM(mediating effect=5.91%), CD3 on CM CD4+(mediating effect=7.28%), and CD3 on secreting Treg(mediating effect=6.70%) both mediated the risk of Ruminococcus1 for MM. Sensitivity analyses further strengthened the robustness of the results.Conclusion:There is a significant causal relationship between GM, immune cell phenotypes, and MM. Modulating the immune system via GM to prevent, monitor, and treat MM is a promising approach.

参考文献:

[1] VAN DE DONK N,PAWLYN C,YONG K L.Multiple myeloma[J].Lancet,2021,397(10272):410-427.
[2] COWAN A J,GREEN D J,KWOK M,et al.Diagnosis and management of multiple myeloma:a review[J].Jama,2022,327(5):464-477.
[3] PADALA S A,BARSOUK A,BARSOUK A,et al.Epidemiology,staging,and management of multiple myeloma[J].Med Sci(Basel),2021,9(1):3.
[4] WANG S,XU L,FENG J,et al.Prevalence and incidence of multiple myeloma in urban area in China:a national population-based analysis[J].Front Oncol,2019,9:1513.
[5] WALLINGTON-BEDDOE C T,MYNOTT R L.Prognostic and predictive biomarker developments in multiple myeloma[J].J Hematol Oncol,2021,14(1):151.
[6] ROY S,TRINCHIERI G.Microbiota:a key orchestrator of cancer therapy[J].Nat Rev Cancer,2017,17(5):271-285.
[7] KHANNA S,TOSH P K.A clinician's primer on the role of the microbiome in human health and disease[J].Mayo Clin Proc,2014,89(1):107-114.
[8] DZUTSEV A,GOLDSZMID R S,VIAUD S,et al.The role of the microbiota in inflammation,carcinogenesis,and cancer therapy[J].Eur J Immunol,2015,45(1):17-31.
[9] YANG W,CONG Y.Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases[J].Cell Mol Immunol,2021,18(4):866-877.
[10] ROOKS M G,GARRETT W S.Gut microbiota,metabolites and host immunity[J].Nat Rev Immunol,2016,16(6):341-352.
[11] SHIM J A,RYU J H,JO Y,et al.The role of gut microbiota in T cell immunity and immune mediated disorders[J].Int J Biol Sci,2023,19(4):1178-1191.
[12] ROUTY B,GOPALAKRISHNAN V,DAILLèRE R,et al.The gut microbiota influences anticancer immunosurveillance and general health[J].Nat Rev Clin Oncol,2018,15(6):382-396.
[13] EMDIN C A,KHERA A V,KATHIRESAN S.Mendelian randomization[J].Jama,2017,318(19):1925-1926.
[14] BOWDEN J,HOLMES M V.Meta-analysis and Mendelian randomization:a review[J].Res Synth Methods,2019,10(4):486-496.
[15] KURILSHIKOV A,MEDINA-GOMEZ C,BACIGALUPE R,et al.Large-scale association analyses identify host factors influencing human gut microbiome composition[J].Nat Genet,2021,53(2):156-165.
[16] LOPERA-MAYA E A,KURILSHIKOV A,VAN DER GRAAF A,et al.Effect of host genetics on the gut microbiome in 7 738 participants of the Dutch Microbiome Project[J].Nat Genet,2022,54(2):143-151.
[17] SEKULA P,DEL GRECO M F,PATTARO C,et al.Mendelian randomization as an approach to assess causality using observational data[J].J Am Soc Nephrol,2016,27(11):3253-3265.
[18] BURGESS S,THOMPSON S G.Avoiding bias from weak instruments in Mendelian randomization studies[J].Int J Epidemiol,2011,40(3):755-764.
[19] XU J,ZHANG S,TIAN Y,et al.Genetic causal association between iron status and osteoarthritis:a two-sample Mendelian randomization[J].Nutrients,2022,14(18):3683.
[20] SHEN Y,LIU H,MENG X,et al.The causal effects between gut microbiota and hemorrhagic stroke:a bidirectional two-sample Mendelian randomization study[J].Front Microbiol,2023,14:1290909.
[21] LI P,WANG H,GUO L,et al.Association between gut microbiota and preeclampsia-eclampsia:a two-sample Mendelian randomization study[J].BMC Med,2022,20(1):443.
[22] HEMANI G,TILLING K,DAVEY SMITH G.Orienting the causal relationship between imprecisely measured traits using GWAS summary data[J].PLoS Genet,2017,13(11):e1007081.
[23] SANDERSON E.Multivariable Mendelian randomization and mediation[J].Cold Spring Harb Perspect Med,2021,11(2):a038984.
[24] O'HARA A M,SHANAHAN F.The gut flora as a forgotten organ[J].EMBO Rep,2006,7(7):688-693.
[25] LEBER A,HONTECILLAS R,TUBAU-JUNI N,et al.NLRX1 modulates immunometabolic mechanisms controlling the host-gut microbiota interactions during inflammatory bowel disease[J].Front Immunol,2018,9:363.
[26] GUO M,HE S,SONG W,et al.The Lachnospiraceae-butyric acid axis and its role in glucocorticoid-associated osteonecrosis[J].J Transl Med,2024,22(1):1015.
[27] RODRÍGUEZ-GARCÍA A,ARROYO A,GARCÍA-VICENTE R,et al.Short-chain fatty acid production by gut microbiota predicts treatment response in multiple myeloma[J].Clin Cancer Res,2024,30(4):904-917.
[28] HAERZSCHEL A,CATUSSE J,HUTTERER E,et al.BCR and chemokine responses upon anti-IgM and anti-IgD stimulation in chronic lymphocytic leukaemia[J].Ann Hematol,2016,95(12):1979-1988.
[29] LOPES R,CAETANO J,FERREIRA B,et al.The immune microenvironment in multiple myeloma:friend or foe?[J].Cancers(Basel),2021,13(4):625.
[30] TOGASHI Y,SHITARA K,NISHIKAWA H.Regulatory T cells in cancer immunosuppression-implications for anticancer therapy[J].Nat Rev Clin Oncol,2019,16(6):356-371.
[31] VIGNALI D A,COLLISON L W,WORKMAN C J.How regulatory T cells work[J].Nat Rev Immunol,2008,8(7):523-532.
[32] EBRAHIMI-NIK H,CORWIN W L,SHCHEGLOVA T,et al.CD11c(+) MHCⅡ(lo) GM-CSF-bone marrow-derived dendritic cells act as antigen donor cells and as antigen presenting cells in neoepitope-elicited tumor immunity against a mouse fibrosarcoma[J].Cancer Immunol Immunother,2018,67(9):1449-1459.
[33] LIU P,WANG Y,YANG G,et al.The role of short-chain fatty acids in intestinal barrier function,inflammation,oxidative stress,and colonic carcinogenesis[J].Pharmacol Res,2021,165:105420.
[34] MATERA G,MUTO V,VINCI M,et al.Receptor recognition of and immune intracellular pathways for veillonella parvula lipopolysaccharide[J].Clin Vaccine Immunol,2009,16(12):1804-1809.
[35] SHARONOV G V,SEREBROVSKAYA E O,YUZHAKOVA D V,et al.B cells,plasma cells and antibody repertoires in the tumour microenvironment[J].Nat Rev Immunol,2020,20(5):294-307.
[36] HUANG S,ZHANG X,WEI Y,et al.Checkpoint CD24 function on tumor and immunotherapy[J].Front Immunol,2024,15:1367959.
[37] RODRIGUEZ-CRUZ A,VESIN D,RAMON-LUING L,et al.CD3(+) macrophages deliver proinflammatory cytokines by a CD3- and transmembrane TNF-dependent pathway and are increased at the BCG-infection site[J].Front Immunol,2019,10:2550.
[38] PENG H Y,WANG L,DAS J K,et al.Control of CD4(+) T cells to restrain inflammatory diseases via eukaryotic elongation factor 2 kinase[J].Signal Transduct Target Ther,2023,8(1):415.
[39] VILLARINO A V,KANNO Y,FERDINAND J R,et al.Mechanisms of Jak/STAT signaling in immunity and disease[J].J Immunol,2015,194(1):21-27.
[40] 黄来全,刘大翔.BTK与PKCβ在多发性骨髓瘤中表达及调控的信号通路机制研究[J].东南大学学报(医学版),2018,37(4):578-583.
[41] OHUE Y,NISHIKAWA H.Regulatory T(Treg) cells in cancer:can Treg cells be a new therapeutic target?[J].Cancer Sci,2019,110(7):2080-2089.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 971361 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626

苏ICP备09058541